

Welcome to Aplex!

[image: Build Status] [https://travis-ci.org/lunluen/aplex] [image: codecov] [https://codecov.io/gh/lunluen/aplex] [image: platform] [https://github.com/lunluen/aplex] [image: supported pythons] [https://pypi.org/project/aplex/] [image: package version] [https://pypi.org/project/aplex/] [image: license] [https://github.com/lunluen/aplex/blob/master/LICENSE] [image: maintenance] [https://github.com/lunluen/aplex]

User’s Guide

	Installation
	Python Version

	Dependencies

	Install Aplex

	Aplex Quickstart
	Installation

	Usage

	Graceful Exit

	Like this?

	Any feedback?

	How to contribute

	License

API Reference

	API
	Executor Objects

	Future Objects

	Load Balancer Objects

Changelog

	Aplex Changelog
	Under Development

	v1.0.1 (2019-02-10)

The Contributor Guide

	The Contributor Guide
	Questions

	Bug Reports

	Pull requests

License

	MIT License

Installation

Python Version

Aplex supports Python3.5+.

Dependencies

Required

	None

Optional

	uvloop [https://github.com/MagicStack/uvloop] is a fast, drop-in replacement of the built-in asyncio event loop.

Install Aplex

For General Users

Use the package manager pip [https://pip.pypa.io/en/stable/] or pipenv [http://pipenv.org/] to
install aplex.

With pip:

$ pip install aplex

Or with pipenv:

$ pipenv install aplex

Install Optional Dependencies

Simply add a suffix:

$ pip install aplex[uvloop]

For Contributors

Install with pipenv(recommand if you want to build docs):

git clone https://github.com/lunluen/aplex.git
cd aplex
pipenv install --dev

or with setuptools [https://github.com/pypa/setuptools]:

git clone https://github.com/lunluen/aplex.git
cd aplex
python setup.py develop

Aplex Quickstart

[image: Build Status]
 [https://travis-ci.org/lunluen/aplex][image: codecov]
 [https://codecov.io/gh/lunluen/aplex][image: platform]
 [https://github.com/lunluen/aplex][image: supported pythons]
 [https://pypi.org/project/aplex/][image: package version]
 [https://pypi.org/project/aplex/][image: license]
 [https://github.com/lunluen/aplex/blob/master/LICENSE][image: maintenance]
 [https://github.com/lunluen/aplex]Translations:
简体中文 [https://github.com/lunluen/aplex/blob/master/misc/README_zh_cn.md]
|
繁體中文 [https://github.com/lunluen/aplex/blob/master/misc/README_zh_tw.md]

“Aplex”, short for “asynchronous pool executor”, is a Python
library for combining asyncio with multiprocessing and threading.

	Aplex helps you run coroutines and functions in other processes
or threads with asyncio concurrently and in parallel (if with processes).

	Aplex provides a usage like that of standard library concurrent.futures,
which is familiar to you and intuitive.

	Aplex lets you do load balancing in a simple way if you need.

Installation

For general users, use the package manager pip [https://pip.pypa.io/en/stable/] to
install aplex.

pip install aplex

For contributors, install with pipenv:

git clone https://github.com/lunluen/aplex.git
cd aplex
pipenv install --dev

or with setuptools:

git clone https://github.com/lunluen/aplex.git
cd aplex
python setup.py develop

Usage

Definition to know:

A work is a callable you want to run with asyncio and multiprocessing or threading.
It can be a coroutine function or just a function.

In below case, the work is the coroutine function demo.

Submit

You can submit your work like:

import aiohttp
from aplex import ProcessAsyncPoolExecutor

async def demo(url):
 async with aiohttp.request('GET', url) as response:
 return response.status

if __name__ == '__main__':
 pool = ProcessAsyncPoolExecutor(pool_size=8)
 future = pool.submit(demo, 'http://httpbin.org')
 print('Status: %d.' % future.result())

Note: If you are running python on windows, if __name__ == '__main__':
is necessary. That’s the design of multiprocessing.

Result:

Status: 200

Map

For multiple works, try map:

iterable = ('http://httpbin.org' for __ in range(10))
for status in pool.map(demo, iterable, timeout=10):
 print('Status: %d.' % status)

Awaiting results

Aplex allows one to await results with the event loop that already exists.
It’s quite simple.

Just set keyword argument awaitable to True!

For example:

pool = ProcessAsyncPoolExecutor(awaitable=True)

Then

future = pool.submit(demo, 'http://httpbin.org')
status = await future

How about map?

async for status in pool.map(demo, iterable, timeout=10):
 print('Status: %d.' % status)

Load balancing

In aplex, each worker running your works is the process or thread on your
computer. That is, they have the same capability computing.
But, your works might have different workloads. Then you need a load balancer.

Aplex provides some useful load balancers. They are RoundRobin, Random, and Average. The default is RoundRobin.

Simply set what you want in the keyword argument of contruction:

from aplex import ProcessAsyncPoolExecutor
from aplex.load_balancers import Average

if __name__ == '__main__':
 pool = ProcessAsyncPoolExecutor(load_balancer=Average)

Done. So easy. :100:

You can also customize one:

from aplex import LoadBalancer

class MyAwesomeLoadBalancer(LoadBalancer):
 def __init__(*args, **kwargs):
 super().__init__(*args, **kwargs) # Don't forget this.
 awesome_attribute = 'Hello Aplex!'

 def get_proper_worker(self):
 the_poor_guy = self.workers[0]
 return the_poor_guy

See details of how to implement a load balancer at: LoadBalancer | API Reference [https://aplex.readthedocs.io/en/latest/api.html#module-aplex.load_balancers]

Worker loop factory

By the way, if you think the build-in asyncio loop is too slow:

import uvloop
from aplex import ProcessAsyncPoolExecutor

if __name__ == '__main__':
 pool = ProcessAsyncPoolExecutor(worker_loop_factory=uvloop.Loop)

Graceful Exit

Taking Python3.6 for example, a graceful exit without aplex would be something like this:

try:
 loop.run_forever()
finally:
 try:
 tasks = asyncio.Task.all_tasks()
 if tasks:
 for task in tasks:
 task.cancel()
 gather = asyncio.gather(*tasks)
 loop.run_until_complete(gather)
 loop.run_until_complete(loop.shutdown_asyncgens())
 finally:
 loop.close()

…It’s definitely a joke.

Here, just treat pool as a context manager:

with ProcessAsyncPoolExecutor() as pool:
 do_something()

or remember to call pool.shutdown().
These help you deal with that joke.

…

What? You forget to call pool.shutdown()?!

Ok, fine. It will shut down automatically when the program exits or it gets garbage-collected.

Like this?

Scroll up and click Watch - Releases only and Star as a thumbs up! :+1:

Any feedback?

Feel free to open a issue (just don’t abuse it).

Or contact me: mas581301@gmail.com :mailbox:

Anything about aplex is welcome, such like bugs, system design, variable naming, even English grammer of docstrings!

How to contribute

Contribution are welcome.

Asking and advising are also kinds of contribution.

Please see CONTRIBUTING.md [https://github.com/lunluen/aplex/blob/master/CONTRIBUTING.md]

License

MIT [https://github.com/lunluen/aplex/blob/master/LICENSE]

API

Executor Objects

	
class aplex.ProcessAsyncPoolExecutor(*, pool_size: Optional[int] = 4, max_works_per_worker: Optional[int] = 300, load_balancer: Optional[aplex.load_balancers.LoadBalancer] = <class 'aplex.load_balancers.RoundRobin'>, awaitable: Optional[bool] = False, future_loop: asyncio.events.AbstractEventLoop = None, worker_loop_factory: Optional[asyncio.events.AbstractEventLoop] = None)

	Setups executor and adds self to executor track set.

	Parameters

	
	pool_size – Number of workers, i.e., number of threads or processes.

	max_works_per_worker – The max number of works a worker can run at
the same time. This does not limit the number of asyncio
tasks of a worker.

	load_balancer – A subclass of aplex.LoadBalancer for submitted
item load balancing that has implemented abstract method
get_proper_worker.

	awaitable – If it’s set to True, futures returned from submit
method will be awaitable, and map will return async
generator(async iterator if python3.5).

	future_loop – Loop instance set in awaitable futures returned from
submit method.

If specified, awaitable must be set to true.

This loop can also be set in set_future_loop method.

	worker_loop_factory – A factory to generate loop instance for
workers to run their job.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – future_loop is specified while awaitable is False.

	
map(work: Callable, *iterables, timeout: Optional[float] = None, chunksize: int = 1, load_balancing_meta: Optional[Any] = None) → Union[AsyncGenerator[T_co, T_contra], Generator[T_co, T_contra, V_co]]

	map your work like the way in concurrent.futures.

The work submitted will be sent to the specific worker that
the load balancer choose.

Note

The work you submit should be a callable, And a coroutine
is not a callable. You should submit a coroutine function
and specify its args and kwargs here instead.

	Parameters

	
	work – The callable that will be run in a worker.

	*iterables – Position arguments for work. All of them are iterable
and have same length.

	timeout – The time limit for waiting results.

	chunksize – Works are gathered, partitioned as chunks in this size,
and then sent to workers.

	load_balancing_meta – This will be passed to load balancer for
the choice of proper worker.

	Returns

	A async generator yielding the map results if awaitable is set
to True, otherwise a generator. In python3.5, async iterator is
used to replace async generator.

If a exception is raised in a work, it will be re-raised in the
generator, and the remaining works will be cancelled.

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If chunksize is less than 1.

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If work is not a callable.

	
set_future_loop(loop: asyncio.events.AbstractEventLoop)

	Sets loop for awaitable futures to await results.

This loop can also be set in initialization.

	Parameters

	loop – The Loop needed for awaitable futures.

	Raises

	
	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – If executor has been shut down, or
executor is set to be unawaitable.

	AplexWorkerError – If some workers are broken or raise
BaseException.

	
shutdown(wait: bool = True)

	Shuts down the executor and frees the resource.

	Parameters

	wait – Whether to block until shutdown is finished.

	
submit(work: Callable, *args, load_balancing_meta: Optional[Any] = None, **kwargs) → Union[aplex.futures.AsyncioFuture, aplex.futures.ConcurrentFuture]

	submits your work like the way in concurrent.futures.

The work submitted will be sent to the specific worker that
the load balancer choose.

Note

The work you submit should be a callable, And a coroutine
is not a callable. You should submit a coroutine function
and specify its args and kwargs here instead.

	Parameters

	
	work – The callable that will be run in a worker.

	*args – Position arguments for work.

	load_balancing_meta – This will be passed to load balancer for
the choice of proper worker.

	**kwargs – Keyword arguments for work.

	Returns

	A future.

The future will be awaitable like that in asyncio if awaitable
is set to True in executor construction, otherwise, unawaitable
like that in concurrent.futures.

	Raises

	
	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – If executor has been shut down.

	AplexWorkerError – If some workers are broken or raise
BaseException.

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If work is not a callable.

	
class aplex.ThreadAsyncPoolExecutor(*, pool_size: Optional[int] = 4, max_works_per_worker: Optional[int] = 300, load_balancer: Optional[aplex.load_balancers.LoadBalancer] = <class 'aplex.load_balancers.RoundRobin'>, awaitable: Optional[bool] = False, future_loop: asyncio.events.AbstractEventLoop = None, worker_loop_factory: Optional[asyncio.events.AbstractEventLoop] = None)

	Setups executor and adds self to executor track set.

	Parameters

	
	pool_size – Number of workers, i.e., number of threads or processes.

	max_works_per_worker – The max number of works a worker can run at
the same time. This does not limit the number of asyncio
tasks of a worker.

	load_balancer – A subclass of aplex.LoadBalancer for submitted
item load balancing that has implemented abstract method
get_proper_worker.

	awaitable – If it’s set to True, futures returned from submit
method will be awaitable, and map will return async
generator(async iterator if python3.5).

	future_loop – Loop instance set in awaitable futures returned from
submit method.

If specified, awaitable must be set to true.

This loop can also be set in set_future_loop method.

	worker_loop_factory – A factory to generate loop instance for
workers to run their job.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – future_loop is specified while awaitable is False.

	
map(work: Callable, *iterables, timeout: Optional[float] = None, chunksize: int = 1, load_balancing_meta: Optional[Any] = None) → Union[AsyncGenerator[T_co, T_contra], Generator[T_co, T_contra, V_co]]

	map your work like the way in concurrent.futures.

The work submitted will be sent to the specific worker that
the load balancer choose.

Note

The work you submit should be a callable, And a coroutine
is not a callable. You should submit a coroutine function
and specify its args and kwargs here instead.

	Parameters

	
	work – The callable that will be run in a worker.

	*iterables – Position arguments for work. All of them are iterable
and have same length.

	timeout – The time limit for waiting results.

	chunksize – Works are gathered, partitioned as chunks in this size,
and then sent to workers.

	load_balancing_meta – This will be passed to load balancer for
the choice of proper worker.

	Returns

	A async generator yielding the map results if awaitable is set
to True, otherwise a generator. In python3.5, async iterator is
used to replace async generator.

If a exception is raised in a work, it will be re-raised in the
generator, and the remaining works will be cancelled.

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If chunksize is less than 1.

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If work is not a callable.

	
set_future_loop(loop: asyncio.events.AbstractEventLoop)

	Sets loop for awaitable futures to await results.

This loop can also be set in initialization.

	Parameters

	loop – The Loop needed for awaitable futures.

	Raises

	
	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – If executor has been shut down, or
executor is set to be unawaitable.

	AplexWorkerError – If some workers are broken or raise
BaseException.

	
shutdown(wait: bool = True)

	Shuts down the executor and frees the resource.

	Parameters

	wait – Whether to block until shutdown is finished.

	
submit(work: Callable, *args, load_balancing_meta: Optional[Any] = None, **kwargs) → Union[aplex.futures.AsyncioFuture, aplex.futures.ConcurrentFuture]

	submits your work like the way in concurrent.futures.

The work submitted will be sent to the specific worker that
the load balancer choose.

Note

The work you submit should be a callable, And a coroutine
is not a callable. You should submit a coroutine function
and specify its args and kwargs here instead.

	Parameters

	
	work – The callable that will be run in a worker.

	*args – Position arguments for work.

	load_balancing_meta – This will be passed to load balancer for
the choice of proper worker.

	**kwargs – Keyword arguments for work.

	Returns

	A future.

The future will be awaitable like that in asyncio if awaitable
is set to True in executor construction, otherwise, unawaitable
like that in concurrent.futures.

	Raises

	
	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – If executor has been shut down.

	AplexWorkerError – If some workers are broken or raise
BaseException.

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If work is not a callable.

Future Objects

	
class aplex.futures.ConcurrentFuture(cancel_interface)

	A concurrent.futures.Future subclass that cancels like asyncio.Task.

	
cancel()

	Tries to cancel the work submitted to worker.

Unlike concurrent.futures, the running work is cancellable
as long as it’s a coroutine function.

	Returns

	True if cancellable, False otherwise.

	
class aplex.futures.AsyncioFuture(concurrent_future, loop=None)

	Asyncio.Future subclass that cancels like asyncio.Task.

	
cancel()

	Tries to cancel the work submitted to worker.

Unlike concurrent.futures, the running work is cancellable
as long as it’s a coroutine function.

	Returns

	True if cancellable, False otherwise.

Load Balancer Objects

	
class aplex.load_balancers.LoadBalancer(workers: List[Worker], workloads: Dict[Worker, int], max_works_per_worker: int)

	The base class of all load balancers.

Users can inherit this to write their own load balancers.

Initialization.

Note: Must call super().__init__(*args, **kwargs) in the
beginning of the __init__ block if you are trying to
overwrite this.

	Parameters

	
	workers – A argument for workers property.

	workloads – A argument for workloads property.

	max_works_per_worker – A argument for max_works_per_worker
property.

	
get_available_workers() → Iterator[Worker]

	Returns the workers that does not reach the
max_works_per_worker limit.

	Returns

	A iterator of the available workers.

	
get_proper_worker(load_balancing_meta: Optional[Any]) → Worker

	The method to be implemented by users. Returns an available worker.

Note

There is always at least an available worker when this method
is called.

	Parameters

	load_balancing_meta – An optional argument specified in submit
and map methods that users may need for choosing a
proper worker.

	Returns

	A worker that is available for work assignment.

	
is_available(worker: Worker) → bool

	Returns if the given worker reaches the max_works_per_worker
limit.

	Parameters

	worker – A worker object.

	Returns

	True if available, else False.

	
max_works_per_worker

	Returns tha max number of works a worker can run at the same time.

	
workers

	Returns worker list.

	
workloads

	Returns worker workload mapping.

	
class aplex.load_balancers.RoundRobin(*args, **kwargs)

	A load balancer based on round-robin algorithm.

	
get_available_workers() → Iterator[Worker]

	Returns the workers that does not reach the
max_works_per_worker limit.

	Returns

	A iterator of the available workers.

	
get_proper_worker(load_balancing_meta: Optional[Any]) → Worker

	Returns the next available worker.

	Parameters

	load_balancing_meta – An optional argument specified in submit
and map methods that users may need for choosing a
proper worker.

	Returns

	A worker that is available for work assignment.

	
is_available(worker: Worker) → bool

	Returns if the given worker reaches the max_works_per_worker
limit.

	Parameters

	worker – A worker object.

	Returns

	True if available, else False.

	
max_works_per_worker

	Returns tha max number of works a worker can run at the same time.

	
workers

	Returns worker list.

	
workloads

	Returns worker workload mapping.

	
class aplex.load_balancers.Random(workers: List[Worker], workloads: Dict[Worker, int], max_works_per_worker: int)

	A load balancer that chooses proper worker randomly.

Initialization.

Note: Must call super().__init__(*args, **kwargs) in the
beginning of the __init__ block if you are trying to
overwrite this.

	Parameters

	
	workers – A argument for workers property.

	workloads – A argument for workloads property.

	max_works_per_worker – A argument for max_works_per_worker
property.

	
get_available_workers() → Iterator[Worker]

	Returns the workers that does not reach the
max_works_per_worker limit.

	Returns

	A iterator of the available workers.

	
get_proper_worker(load_balancing_meta: Optional[Any]) → Worker

	Randomly picks an avaiable worker.

	Parameters

	load_balancing_meta – An optional argument specified in submit
and map methods that users may need for choosing a
proper worker.

	Returns

	A worker that is available for work assignment.

	
is_available(worker: Worker) → bool

	Returns if the given worker reaches the max_works_per_worker
limit.

	Parameters

	worker – A worker object.

	Returns

	True if available, else False.

	
max_works_per_worker

	Returns tha max number of works a worker can run at the same time.

	
workers

	Returns worker list.

	
workloads

	Returns worker workload mapping.

	
class aplex.load_balancers.Average(workers: List[Worker], workloads: Dict[Worker, int], max_works_per_worker: int)

	A load balancer that tries to equalize the workloads of all the workers.

To put it otherwise, it assign work to the worker having minimun workload.

Initialization.

Note: Must call super().__init__(*args, **kwargs) in the
beginning of the __init__ block if you are trying to
overwrite this.

	Parameters

	
	workers – A argument for workers property.

	workloads – A argument for workloads property.

	max_works_per_worker – A argument for max_works_per_worker
property.

	
get_available_workers() → Iterator[Worker]

	Returns the workers that does not reach the
max_works_per_worker limit.

	Returns

	A iterator of the available workers.

	
get_proper_worker(load_balancing_meta: Optional[Any]) → Worker

	Returns the worker with minimum workload.

	Parameters

	load_balancing_meta – An optional argument specified in submit
and map methods that users may need for choosing a
proper worker.

	Returns

	A worker that is available for work assignment.

	
is_available(worker: Worker) → bool

	Returns if the given worker reaches the max_works_per_worker
limit.

	Parameters

	worker – A worker object.

	Returns

	True if available, else False.

	
max_works_per_worker

	Returns tha max number of works a worker can run at the same time.

	
workers

	Returns worker list.

	
workloads

	Returns worker workload mapping.

Aplex Changelog

Under Development

New Features

	TODO

Improvements

	TODO

Bugfixes

	TODO

Dependencies

	TODO

Deprecations

	TODO

Miscellaneous

	TODO

v1.0.1 (2019-02-10)

First release.

The Contributor Guide

Questions

It’s better to ask on Stack Overflow, but not limited to. Remember to add a tag of aplex.

Bug Reports

It’s better to tell me but not limited to:

	What you expected to happen

	What actually happens (include the complete traceback)

	How to reproduce the issue

	Your python and aplex versions

Pull requests

Keep the code style consistent. This package follows Google Style Guide [https://github.com/google/styleguide/blob/gh-pages/pyguide.md].

MIT License

MIT License

Copyright (c) 2019 Lun

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 aplex	

 	
 	
 aplex.futures	

 	
 	
 aplex.load_balancers	

Index

 A
 | C
 | G
 | I
 | L
 | M
 | P
 | R
 | S
 | T
 | W

A

 	
 	aplex (module)

 	aplex.futures (module)

 	
 	aplex.load_balancers (module)

 	AsyncioFuture (class in aplex.futures)

 	Average (class in aplex.load_balancers)

C

 	
 	cancel() (aplex.futures.AsyncioFuture method)

 	(aplex.futures.ConcurrentFuture method)

 	
 	ConcurrentFuture (class in aplex.futures)

G

 	
 	get_available_workers() (aplex.load_balancers.Average method)

 	(aplex.load_balancers.LoadBalancer method)

 	(aplex.load_balancers.Random method)

 	(aplex.load_balancers.RoundRobin method)

 	
 	get_proper_worker() (aplex.load_balancers.Average method)

 	(aplex.load_balancers.LoadBalancer method)

 	(aplex.load_balancers.Random method)

 	(aplex.load_balancers.RoundRobin method)

I

 	
 	is_available() (aplex.load_balancers.Average method)

 	(aplex.load_balancers.LoadBalancer method)

 	(aplex.load_balancers.Random method)

 	(aplex.load_balancers.RoundRobin method)

L

 	
 	LoadBalancer (class in aplex.load_balancers)

M

 	
 	map() (aplex.ProcessAsyncPoolExecutor method)

 	(aplex.ThreadAsyncPoolExecutor method)

 	max_works_per_worker (aplex.load_balancers.Average attribute)

 	(aplex.load_balancers.LoadBalancer attribute)

 	(aplex.load_balancers.Random attribute)

 	(aplex.load_balancers.RoundRobin attribute)

P

 	
 	ProcessAsyncPoolExecutor (class in aplex)

R

 	
 	Random (class in aplex.load_balancers)

 	
 	RoundRobin (class in aplex.load_balancers)

S

 	
 	set_future_loop() (aplex.ProcessAsyncPoolExecutor method)

 	(aplex.ThreadAsyncPoolExecutor method)

 	shutdown() (aplex.ProcessAsyncPoolExecutor method)

 	(aplex.ThreadAsyncPoolExecutor method)

 	
 	submit() (aplex.ProcessAsyncPoolExecutor method)

 	(aplex.ThreadAsyncPoolExecutor method)

T

 	
 	ThreadAsyncPoolExecutor (class in aplex)

W

 	
 	workers (aplex.load_balancers.Average attribute)

 	(aplex.load_balancers.LoadBalancer attribute)

 	(aplex.load_balancers.Random attribute)

 	(aplex.load_balancers.RoundRobin attribute)

 	
 	workloads (aplex.load_balancers.Average attribute)

 	(aplex.load_balancers.LoadBalancer attribute)

 	(aplex.load_balancers.Random attribute)

 	(aplex.load_balancers.RoundRobin attribute)

 _static/ajax-loader.gif

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Welcome to Aplex!

 		
 Installation

 		
 Python Version

 		
 Dependencies

 		
 Required

 		
 Optional

 		
 Install Aplex

 		
 For General Users

 		
 For Contributors

 		
 Aplex Quickstart

 		
 Installation

 		
 Usage

 		
 Submit

 		
 Map

 		
 Awaiting results

 		
 Load balancing

 		
 Worker loop factory

 		
 Graceful Exit

 		
 Like this?

 		
 Any feedback?

 		
 How to contribute

 		
 License

 		
 API

 		
 Executor Objects

 		
 Future Objects

 		
 Load Balancer Objects

 		
 Aplex Changelog

 		
 Under Development

 		
 New Features

 		
 Improvements

 		
 Bugfixes

 		
 Dependencies

 		
 Deprecations

 		
 Miscellaneous

 		
 v1.0.1 (2019-02-10)

 		
 The Contributor Guide

 		
 Questions

 		
 Bug Reports

 		
 Pull requests

 		
 MIT License

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

