
aplex Documentation
Release 1.0.1

Lunluen

Oct 24, 2019

Contents:

1 User’s Guide 3
1.1 Installation . 3
1.2 Aplex Quickstart . 4

2 API Reference 9
2.1 API . 9

3 Changelog 17
3.1 Aplex Changelog . 17

4 The Contributor Guide 19
4.1 The Contributor Guide . 19

5 License 21
5.1 MIT License . 21

Python Module Index 23

Index 25

i

ii

aplex Documentation, Release 1.0.1

Contents: 1

https://travis-ci.org/lunluen/aplex
https://codecov.io/gh/lunluen/aplex
https://github.com/lunluen/aplex
https://pypi.org/project/aplex/
https://pypi.org/project/aplex/
https://github.com/lunluen/aplex/blob/master/LICENSE
https://github.com/lunluen/aplex

aplex Documentation, Release 1.0.1

2 Contents:

CHAPTER 1

User’s Guide

1.1 Installation

1.1.1 Python Version

Aplex supports Python3.5+.

1.1.2 Dependencies

Required

• None

Optional

• uvloop is a fast, drop-in replacement of the built-in asyncio event loop.

1.1.3 Install Aplex

For General Users

Use the package manager pip or pipenv to install aplex.

With pip:

$ pip install aplex

Or with pipenv:

3

https://github.com/MagicStack/uvloop
https://pip.pypa.io/en/stable/
http://pipenv.org/

aplex Documentation, Release 1.0.1

$ pipenv install aplex

Install Optional Dependencies

Simply add a suffix:

$ pip install aplex[uvloop]

For Contributors

Install with pipenv(recommand if you want to build docs):

git clone https://github.com/lunluen/aplex.git
cd aplex
pipenv install --dev

or with setuptools:

git clone https://github.com/lunluen/aplex.git
cd aplex
python setup.py develop

1.2 Aplex Quickstart

Translations: |

“Aplex”, short for “asynchronous pool executor”, is a Python library for combining asyncio with multiprocessing and
threading.

• Aplex helps you run coroutines and functions in other processes or threads with asyncio concurrently and in
parallel (if with processes).

• Aplex provides a usage like that of standard library concurrent.futures, which is familiar to you and
intuitive.

• Aplex lets you do load balancing in a simple way if you need.

4 Chapter 1. User’s Guide

https://github.com/pypa/setuptools
https://travis-ci.org/lunluen/aplex
https://codecov.io/gh/lunluen/aplex
https://github.com/lunluen/aplex
https://pypi.org/project/aplex/
https://pypi.org/project/aplex/
https://github.com/lunluen/aplex/blob/master/LICENSE
https://github.com/lunluen/aplex
https://github.com/lunluen/aplex/blob/master/misc/README_zh_cn.md
https://github.com/lunluen/aplex/blob/master/misc/README_zh_tw.md

aplex Documentation, Release 1.0.1

1.2.1 Installation

For general users, use the package manager pip to install aplex.

pip install aplex

For contributors, install with pipenv:

git clone https://github.com/lunluen/aplex.git
cd aplex
pipenv install --dev

or with setuptools:

git clone https://github.com/lunluen/aplex.git
cd aplex
python setup.py develop

1.2.2 Usage

Definition to know:

A work is a callable you want to run with asyncio and multiprocessing or threading. It can be a
coroutine function or just a function.

In below case, the work is the coroutine function demo.

Submit

You can submit your work like:

import aiohttp
from aplex import ProcessAsyncPoolExecutor

async def demo(url):
async with aiohttp.request('GET', url) as response:

return response.status

if __name__ == '__main__':
pool = ProcessAsyncPoolExecutor(pool_size=8)
future = pool.submit(demo, 'http://httpbin.org')
print('Status: %d.' % future.result())

Note: If you are running python on windows, if __name__ == '__main__': is necessary. That’s the design
of multiprocessing.

Result:

Status: 200

Map

For multiple works, try map:

1.2. Aplex Quickstart 5

https://pip.pypa.io/en/stable/

aplex Documentation, Release 1.0.1

iterable = ('http://httpbin.org' for __ in range(10))
for status in pool.map(demo, iterable, timeout=10):

print('Status: %d.' % status)

Awaiting results

Aplex allows one to await results with the event loop that already exists. It’s quite simple.

Just set keyword argument awaitable to True!

For example:

pool = ProcessAsyncPoolExecutor(awaitable=True)

Then

future = pool.submit(demo, 'http://httpbin.org')
status = await future

How about map?

async for status in pool.map(demo, iterable, timeout=10):
print('Status: %d.' % status)

Load balancing

In aplex, each worker running your works is the process or thread on your computer. That is, they have the same
capability computing. But, your works might have different workloads. Then you need a load balancer.

Aplex provides some useful load balancers. They are RoundRobin, Random, and Average. The default is
RoundRobin.

Simply set what you want in the keyword argument of contruction:

from aplex import ProcessAsyncPoolExecutor
from aplex.load_balancers import Average

if __name__ == '__main__':
pool = ProcessAsyncPoolExecutor(load_balancer=Average)

Done. So easy. :100:

You can also customize one:

from aplex import LoadBalancer

class MyAwesomeLoadBalancer(LoadBalancer):
def __init__(*args, **kwargs):

super().__init__(*args, **kwargs) # Don't forget this.
awesome_attribute = 'Hello Aplex!'

def get_proper_worker(self):
the_poor_guy = self.workers[0]
return the_poor_guy

See details of how to implement a load balancer at: LoadBalancer | API Reference

6 Chapter 1. User’s Guide

https://aplex.readthedocs.io/en/latest/api.html#module-aplex.load_balancers

aplex Documentation, Release 1.0.1

Worker loop factory

By the way, if you think the build-in asyncio loop is too slow:

import uvloop
from aplex import ProcessAsyncPoolExecutor

if __name__ == '__main__':
pool = ProcessAsyncPoolExecutor(worker_loop_factory=uvloop.Loop)

1.2.3 Graceful Exit

Taking Python3.6 for example, a graceful exit without aplex would be something like this:

try:
loop.run_forever()

finally:
try:

tasks = asyncio.Task.all_tasks()
if tasks:

for task in tasks:
task.cancel()

gather = asyncio.gather(*tasks)
loop.run_until_complete(gather)

loop.run_until_complete(loop.shutdown_asyncgens())
finally:

loop.close()

. . . It’s definitely a joke.

Here, just treat pool as a context manager:

with ProcessAsyncPoolExecutor() as pool:
do_something()

or remember to call pool.shutdown(). These help you deal with that joke.

. . .

What? You forget to call pool.shutdown()?!

Ok, fine. It will shut down automatically when the program exits or it gets garbage-collected.

1.2.4 Like this?

Scroll up and click Watch - Releases only and Star as a thumbs up! :+1:

1.2.5 Any feedback?

Feel free to open a issue (just don’t abuse it).

Or contact me: mas581301@gmail.com :mailbox:

Anything about aplex is welcome, such like bugs, system design, variable naming, even English grammer of doc-
strings!

1.2. Aplex Quickstart 7

aplex Documentation, Release 1.0.1

1.2.6 How to contribute

Contribution are welcome.

Asking and advising are also kinds of contribution.

Please see CONTRIBUTING.md

1.2.7 License

MIT

8 Chapter 1. User’s Guide

https://github.com/lunluen/aplex/blob/master/CONTRIBUTING.md
https://github.com/lunluen/aplex/blob/master/LICENSE

CHAPTER 2

API Reference

2.1 API

2.1.1 Executor Objects

class aplex.ProcessAsyncPoolExecutor(*, pool_size: Optional[int] =
4, max_works_per_worker: Op-
tional[int] = 300, load_balancer: Op-
tional[aplex.load_balancers.LoadBalancer] =
<class ’aplex.load_balancers.RoundRobin’>,
awaitable: Optional[bool] = False, fu-
ture_loop: asyncio.events.AbstractEventLoop
= None, worker_loop_factory: Op-
tional[asyncio.events.AbstractEventLoop] = None)

Setups executor and adds self to executor track set.

Parameters

• pool_size – Number of workers, i.e., number of threads or processes.

• max_works_per_worker – The max number of works a worker can run at the same
time. This does not limit the number of asyncio tasks of a worker.

• load_balancer – A subclass of aplex.LoadBalancer for submitted item load balancing
that has implemented abstract method get_proper_worker.

• awaitable – If it’s set to True, futures returned from submit method will be awaitable,
and map will return async generator(async iterator if python3.5).

• future_loop – Loop instance set in awaitable futures returned from submit method.

If specified, awaitable must be set to true.

This loop can also be set in set_future_loop method.

• worker_loop_factory – A factory to generate loop instance for workers to run their
job.

9

aplex Documentation, Release 1.0.1

Raises ValueError – future_loop is specified while awaitable is False.

map(work: Callable, *iterables, timeout: Optional[float] = None, chunksize: int = 1,
load_balancing_meta: Optional[Any] = None) → Union[AsyncGenerator[T_co, T_contra], Gen-
erator[T_co, T_contra, V_co]]
map your work like the way in concurrent.futures.

The work submitted will be sent to the specific worker that the load balancer choose.

Note: The work you submit should be a callable, And a coroutine is not a callable. You should submit
a coroutine function and specify its args and kwargs here instead.

Parameters

• work – The callable that will be run in a worker.

• *iterables – Position arguments for work. All of them are iterable and have same
length.

• timeout – The time limit for waiting results.

• chunksize – Works are gathered, partitioned as chunks in this size, and then sent to
workers.

• load_balancing_meta – This will be passed to load balancer for the choice of proper
worker.

Returns

A async generator yielding the map results if awaitable is set to True, otherwise a gener-
ator. In python3.5, async iterator is used to replace async generator.

If a exception is raised in a work, it will be re-raised in the generator, and the remaining
works will be cancelled.

Raises

• ValueError – If chunksize is less than 1.

• TypeError – If work is not a callable.

set_future_loop(loop: asyncio.events.AbstractEventLoop)
Sets loop for awaitable futures to await results.

This loop can also be set in initialization.

Parameters loop – The Loop needed for awaitable futures.

Raises

• RuntimeError – If executor has been shut down, or executor is set to be unawaitable.

• AplexWorkerError – If some workers are broken or raise BaseException.

shutdown(wait: bool = True)
Shuts down the executor and frees the resource.

Parameters wait – Whether to block until shutdown is finished.

submit(work: Callable, *args, load_balancing_meta: Optional[Any] = None, **kwargs) →
Union[aplex.futures.AsyncioFuture, aplex.futures.ConcurrentFuture]

submits your work like the way in concurrent.futures.

The work submitted will be sent to the specific worker that the load balancer choose.

10 Chapter 2. API Reference

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#RuntimeError

aplex Documentation, Release 1.0.1

Note: The work you submit should be a callable, And a coroutine is not a callable. You should submit
a coroutine function and specify its args and kwargs here instead.

Parameters

• work – The callable that will be run in a worker.

• *args – Position arguments for work.

• load_balancing_meta – This will be passed to load balancer for the choice of proper
worker.

• **kwargs – Keyword arguments for work.

Returns

A future.

The future will be awaitable like that in asyncio if awaitable is set to True in executor
construction, otherwise, unawaitable like that in concurrent.futures.

Raises

• RuntimeError – If executor has been shut down.

• AplexWorkerError – If some workers are broken or raise BaseException.

• TypeError – If work is not a callable.

class aplex.ThreadAsyncPoolExecutor(*, pool_size: Optional[int] = 4, max_works_per_worker:
Optional[int] = 300, load_balancer: Op-
tional[aplex.load_balancers.LoadBalancer] =
<class ’aplex.load_balancers.RoundRobin’>,
awaitable: Optional[bool] = False, fu-
ture_loop: asyncio.events.AbstractEventLoop
= None, worker_loop_factory: Op-
tional[asyncio.events.AbstractEventLoop] = None)

Setups executor and adds self to executor track set.

Parameters

• pool_size – Number of workers, i.e., number of threads or processes.

• max_works_per_worker – The max number of works a worker can run at the same
time. This does not limit the number of asyncio tasks of a worker.

• load_balancer – A subclass of aplex.LoadBalancer for submitted item load balancing
that has implemented abstract method get_proper_worker.

• awaitable – If it’s set to True, futures returned from submit method will be awaitable,
and map will return async generator(async iterator if python3.5).

• future_loop – Loop instance set in awaitable futures returned from submit method.

If specified, awaitable must be set to true.

This loop can also be set in set_future_loop method.

• worker_loop_factory – A factory to generate loop instance for workers to run their
job.

Raises ValueError – future_loop is specified while awaitable is False.

2.1. API 11

https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError

aplex Documentation, Release 1.0.1

map(work: Callable, *iterables, timeout: Optional[float] = None, chunksize: int = 1,
load_balancing_meta: Optional[Any] = None) → Union[AsyncGenerator[T_co, T_contra], Gen-
erator[T_co, T_contra, V_co]]
map your work like the way in concurrent.futures.

The work submitted will be sent to the specific worker that the load balancer choose.

Note: The work you submit should be a callable, And a coroutine is not a callable. You should submit
a coroutine function and specify its args and kwargs here instead.

Parameters

• work – The callable that will be run in a worker.

• *iterables – Position arguments for work. All of them are iterable and have same
length.

• timeout – The time limit for waiting results.

• chunksize – Works are gathered, partitioned as chunks in this size, and then sent to
workers.

• load_balancing_meta – This will be passed to load balancer for the choice of proper
worker.

Returns

A async generator yielding the map results if awaitable is set to True, otherwise a gener-
ator. In python3.5, async iterator is used to replace async generator.

If a exception is raised in a work, it will be re-raised in the generator, and the remaining
works will be cancelled.

Raises

• ValueError – If chunksize is less than 1.

• TypeError – If work is not a callable.

set_future_loop(loop: asyncio.events.AbstractEventLoop)
Sets loop for awaitable futures to await results.

This loop can also be set in initialization.

Parameters loop – The Loop needed for awaitable futures.

Raises

• RuntimeError – If executor has been shut down, or executor is set to be unawaitable.

• AplexWorkerError – If some workers are broken or raise BaseException.

shutdown(wait: bool = True)
Shuts down the executor and frees the resource.

Parameters wait – Whether to block until shutdown is finished.

submit(work: Callable, *args, load_balancing_meta: Optional[Any] = None, **kwargs) →
Union[aplex.futures.AsyncioFuture, aplex.futures.ConcurrentFuture]

submits your work like the way in concurrent.futures.

The work submitted will be sent to the specific worker that the load balancer choose.

12 Chapter 2. API Reference

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#RuntimeError

aplex Documentation, Release 1.0.1

Note: The work you submit should be a callable, And a coroutine is not a callable. You should submit
a coroutine function and specify its args and kwargs here instead.

Parameters

• work – The callable that will be run in a worker.

• *args – Position arguments for work.

• load_balancing_meta – This will be passed to load balancer for the choice of proper
worker.

• **kwargs – Keyword arguments for work.

Returns

A future.

The future will be awaitable like that in asyncio if awaitable is set to True in executor
construction, otherwise, unawaitable like that in concurrent.futures.

Raises

• RuntimeError – If executor has been shut down.

• AplexWorkerError – If some workers are broken or raise BaseException.

• TypeError – If work is not a callable.

2.1.2 Future Objects

class aplex.futures.ConcurrentFuture(cancel_interface)
A concurrent.futures.Future subclass that cancels like asyncio.Task.

cancel()
Tries to cancel the work submitted to worker.

Unlike concurrent.futures, the running work is cancellable as long as it’s a coroutine
function.

Returns True if cancellable, False otherwise.

class aplex.futures.AsyncioFuture(concurrent_future, loop=None)
Asyncio.Future subclass that cancels like asyncio.Task.

cancel()
Tries to cancel the work submitted to worker.

Unlike concurrent.futures, the running work is cancellable as long as it’s a coroutine
function.

Returns True if cancellable, False otherwise.

2.1.3 Load Balancer Objects

class aplex.load_balancers.LoadBalancer(workers: List[Worker], workloads: Dict[Worker,
int], max_works_per_worker: int)

The base class of all load balancers.

Users can inherit this to write their own load balancers.

2.1. API 13

https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/exceptions.html#TypeError

aplex Documentation, Release 1.0.1

Initialization.

Note: Must call super().__init__(*args, **kwargs) in the beginning of the __init__ block if
you are trying to overwrite this.

Parameters

• workers – A argument for workers property.

• workloads – A argument for workloads property.

• max_works_per_worker – A argument for max_works_per_worker property.

get_available_workers()→ Iterator[Worker]
Returns the workers that does not reach the max_works_per_worker limit.

Returns A iterator of the available workers.

get_proper_worker(load_balancing_meta: Optional[Any])→ Worker
The method to be implemented by users. Returns an available worker.

Note: There is always at least an available worker when this method is called.

Parameters load_balancing_meta – An optional argument specified in submit and map
methods that users may need for choosing a proper worker.

Returns A worker that is available for work assignment.

is_available(worker: Worker)→ bool
Returns if the given worker reaches the max_works_per_worker limit.

Parameters worker – A worker object.

Returns True if available, else False.

max_works_per_worker
Returns tha max number of works a worker can run at the same time.

workers
Returns worker list.

workloads
Returns worker workload mapping.

class aplex.load_balancers.RoundRobin(*args, **kwargs)
A load balancer based on round-robin algorithm.

get_available_workers()→ Iterator[Worker]
Returns the workers that does not reach the max_works_per_worker limit.

Returns A iterator of the available workers.

get_proper_worker(load_balancing_meta: Optional[Any])→ Worker
Returns the next available worker.

Parameters load_balancing_meta – An optional argument specified in submit and map
methods that users may need for choosing a proper worker.

Returns A worker that is available for work assignment.

is_available(worker: Worker)→ bool
Returns if the given worker reaches the max_works_per_worker limit.

14 Chapter 2. API Reference

aplex Documentation, Release 1.0.1

Parameters worker – A worker object.

Returns True if available, else False.

max_works_per_worker
Returns tha max number of works a worker can run at the same time.

workers
Returns worker list.

workloads
Returns worker workload mapping.

class aplex.load_balancers.Random(workers: List[Worker], workloads: Dict[Worker, int],
max_works_per_worker: int)

A load balancer that chooses proper worker randomly.

Initialization.

Note: Must call super().__init__(*args, **kwargs) in the beginning of the __init__ block if
you are trying to overwrite this.

Parameters

• workers – A argument for workers property.

• workloads – A argument for workloads property.

• max_works_per_worker – A argument for max_works_per_worker property.

get_available_workers()→ Iterator[Worker]
Returns the workers that does not reach the max_works_per_worker limit.

Returns A iterator of the available workers.

get_proper_worker(load_balancing_meta: Optional[Any])→ Worker
Randomly picks an avaiable worker.

Parameters load_balancing_meta – An optional argument specified in submit and map
methods that users may need for choosing a proper worker.

Returns A worker that is available for work assignment.

is_available(worker: Worker)→ bool
Returns if the given worker reaches the max_works_per_worker limit.

Parameters worker – A worker object.

Returns True if available, else False.

max_works_per_worker
Returns tha max number of works a worker can run at the same time.

workers
Returns worker list.

workloads
Returns worker workload mapping.

class aplex.load_balancers.Average(workers: List[Worker], workloads: Dict[Worker, int],
max_works_per_worker: int)

A load balancer that tries to equalize the workloads of all the workers.

To put it otherwise, it assign work to the worker having minimun workload.

Initialization.

2.1. API 15

aplex Documentation, Release 1.0.1

Note: Must call super().__init__(*args, **kwargs) in the beginning of the __init__ block if
you are trying to overwrite this.

Parameters

• workers – A argument for workers property.

• workloads – A argument for workloads property.

• max_works_per_worker – A argument for max_works_per_worker property.

get_available_workers()→ Iterator[Worker]
Returns the workers that does not reach the max_works_per_worker limit.

Returns A iterator of the available workers.

get_proper_worker(load_balancing_meta: Optional[Any])→ Worker
Returns the worker with minimum workload.

Parameters load_balancing_meta – An optional argument specified in submit and map
methods that users may need for choosing a proper worker.

Returns A worker that is available for work assignment.

is_available(worker: Worker)→ bool
Returns if the given worker reaches the max_works_per_worker limit.

Parameters worker – A worker object.

Returns True if available, else False.

max_works_per_worker
Returns tha max number of works a worker can run at the same time.

workers
Returns worker list.

workloads
Returns worker workload mapping.

16 Chapter 2. API Reference

CHAPTER 3

Changelog

3.1 Aplex Changelog

3.1.1 Under Development

New Features

• TODO

Improvements

• TODO

Bugfixes

• TODO

Dependencies

• TODO

Deprecations

• TODO

Miscellaneous

• TODO

17

aplex Documentation, Release 1.0.1

3.1.2 v1.0.1 (2019-02-10)

First release.

18 Chapter 3. Changelog

CHAPTER 4

The Contributor Guide

4.1 The Contributor Guide

4.1.1 Questions

It’s better to ask on Stack Overflow, but not limited to. Remember to add a tag of aplex.

4.1.2 Bug Reports

It’s better to tell me but not limited to:

• What you expected to happen

• What actually happens (include the complete traceback)

• How to reproduce the issue

• Your python and aplex versions

4.1.3 Pull requests

Keep the code style consistent. This package follows Google Style Guide.

19

{[}https://stackoverflow.com/questions/tagged/aplex{]}
https://github.com/google/styleguide/blob/gh-pages/pyguide.md

aplex Documentation, Release 1.0.1

20 Chapter 4. The Contributor Guide

CHAPTER 5

License

5.1 MIT License

MIT License

Copyright (c) 2019 Lun

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

21

aplex Documentation, Release 1.0.1

22 Chapter 5. License

Python Module Index

a
aplex, 9
aplex.futures, 13
aplex.load_balancers, 13

23

aplex Documentation, Release 1.0.1

24 Python Module Index

Index

A
aplex (module), 9
aplex.futures (module), 13
aplex.load_balancers (module), 13
AsyncioFuture (class in aplex.futures), 13
Average (class in aplex.load_balancers), 15

C
cancel() (aplex.futures.AsyncioFuture method), 13
cancel() (aplex.futures.ConcurrentFuture method), 13
ConcurrentFuture (class in aplex.futures), 13

G
get_available_workers()

(aplex.load_balancers.Average method),
16

get_available_workers()
(aplex.load_balancers.LoadBalancer method),
14

get_available_workers()
(aplex.load_balancers.Random method),
15

get_available_workers()
(aplex.load_balancers.RoundRobin method),
14

get_proper_worker()
(aplex.load_balancers.Average method),
16

get_proper_worker()
(aplex.load_balancers.LoadBalancer method),
14

get_proper_worker()
(aplex.load_balancers.Random method),
15

get_proper_worker()
(aplex.load_balancers.RoundRobin method),
14

I
is_available() (aplex.load_balancers.Average

method), 16
is_available() (aplex.load_balancers.LoadBalancer

method), 14
is_available() (aplex.load_balancers.Random

method), 15
is_available() (aplex.load_balancers.RoundRobin

method), 14

L
LoadBalancer (class in aplex.load_balancers), 13

M
map() (aplex.ProcessAsyncPoolExecutor method), 10
map() (aplex.ThreadAsyncPoolExecutor method), 11
max_works_per_worker

(aplex.load_balancers.Average attribute),
16

max_works_per_worker
(aplex.load_balancers.LoadBalancer at-
tribute), 14

max_works_per_worker
(aplex.load_balancers.Random attribute),
15

max_works_per_worker
(aplex.load_balancers.RoundRobin attribute),
15

P
ProcessAsyncPoolExecutor (class in aplex), 9

R
Random (class in aplex.load_balancers), 15
RoundRobin (class in aplex.load_balancers), 14

S
set_future_loop()

(aplex.ProcessAsyncPoolExecutor method), 10
set_future_loop()

(aplex.ThreadAsyncPoolExecutor method),
12

25

aplex Documentation, Release 1.0.1

shutdown() (aplex.ProcessAsyncPoolExecutor
method), 10

shutdown() (aplex.ThreadAsyncPoolExecutor
method), 12

submit() (aplex.ProcessAsyncPoolExecutor method),
10

submit() (aplex.ThreadAsyncPoolExecutor method),
12

T
ThreadAsyncPoolExecutor (class in aplex), 11

W
workers (aplex.load_balancers.Average attribute), 16
workers (aplex.load_balancers.LoadBalancer at-

tribute), 14
workers (aplex.load_balancers.Random attribute), 15
workers (aplex.load_balancers.RoundRobin attribute),

15
workloads (aplex.load_balancers.Average attribute),

16
workloads (aplex.load_balancers.LoadBalancer at-

tribute), 14
workloads (aplex.load_balancers.Random attribute),

15
workloads (aplex.load_balancers.RoundRobin at-

tribute), 15

26 Index

	User’s Guide
	Installation
	Aplex Quickstart

	API Reference
	API

	Changelog
	Aplex Changelog

	The Contributor Guide
	The Contributor Guide

	License
	MIT License

	Python Module Index
	Index

